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Abstract

In wearable-sensor-based activity recognition, it is often as-
sumed that the training and the test samples follow the same
data distribution. This assumption neglects practical scenar-
ios where the activity patterns inevitably vary from person
to person. To solve this problem, transfer learning and do-
main adaptation approaches are often leveraged to reduce the
gaps between different participants. Nevertheless, these ap-
proaches require additional information (i.e., labeled or unla-
beled data, meta-information) from the target domain during
the training stage. In this paper, we introduce a novel method
named Generalizable Independent Latent Excitation (GILE)
for human activity recognition, which greatly enhances the
cross-person generalization capability of the model. Our pro-
posed method is superior to existing methods in the sense that
it does not require any access to the target domain informa-
tion. Besides, this novel model can be directly applied to vari-
ous target domains without re-training or fine-tuning. Specifi-
cally, the proposed model learns to automatically disentangle
domain-agnostic and domain-specific features, the former of
which are expected to be invariant across various persons. To
further remove correlations between the two types of features,
a novel Independent Excitation mechanism is incorporated in
the latent feature space. Comprehensive experimental evalu-
ations are conducted on three benchmark datasets to demon-
strate the superiority of the proposed method over state-of-
the-art solutions.

Introduction

With the development of ubiquitous wearable sensors, such
as mobile phones, smart watches and sports bracelets, hu-
man activity recognition has become one of the most cru-
cial techniques in a wide range of real-world applications,
such as healthcare, gait analysis, assisted living, security
and smart homes (Chen et al. 2020; Wang et al. 2019;
Janidarmian et al. 2017; Bulling, Blanke, and Schiele 2014;
Lara and Labrador 2013). The goal of activity recognition
is to classify the activities conducted by the participants via
machine learning algorithms. Generally, there are two types
of scenarios: wearable-sensor-based and video-based set-
tings (Wang et al. 2019). In this work, we focus on wearable-
sensor-based human activity recognition, in which the raw
data is composed of streams of sensor readings received
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from wearable sensors. As the activity recognition appli-
cations become more and more pervasive, constructing a
model that works well for different persons becomes in-
creasingly important. Some state-of-the-art models improve
the model capacity by improving feature learning capabil-
ities with multiple neural network modules such as Con-
volutional Neural Networks, Recurrent Neural Networks
and Autoencoders (Yang et al. 2015; Morales and Roggen
2016a; Qian et al. 2019). These models work well when the
training and test data have overlapping data distributions,
which are achieved by splitting data of each participant into
both training and test sets (Micucci, Mobilio, and Napole-
tano 2016). Nevertheless, this kind of training/test split is
rather impractical in real world applications, as it is almost
impossible to annotate sufficient training data for every new
user. What’s worse, the accuracy of such models plummets
when applied to data collected from new unseen partici-
pants, indicating lack of generality across different persons.

To tackle the distribution discrepancies among different
persons, transfer learning and domain adaptation methods
are proposed in the literature (Pan and Yang 2010). Trans-
fer learning methods typically train a model from multi-
ple source domains and then adapt to the target domain.
In order to avoid negative transfer, additional information is
more or less required from the target domain, such as anno-
tated or unlabeled data, or other meta-information (e.g., the
class label proportion) (Morales and Roggen 2016b; Wang
et al. 2018; Khan, Roy, and Misra 2018; Wilson, Doppa,
and Cook 2020). With the auxiliary information represent-
ing the target domain, it is possible to fine-tune the mod-
els to adapt to the target domain (Buffelli and Vandin 2020;
Rokni, Nourollahi, and Ghasemzadeh 2018; Mazankiewicz,
Bohm, and Bergés 2020). In the meanwhile, features can be
mapped to a common subspace in order to reduce domain
gap (Bai et al. 2020; Wang et al. 2018). From the literature,
transfer-based approaches are demonstrated to be effective
to reduce domain gaps. However, these existing approaches
have a notable limitation, that is, in the case of multiple tar-
get domains, the models need to be re-trained for each tar-
get domain. Domain generalization approaches aim to learn
generalizable features from several related source domains,
to make the model work well on previously unseen domains
during test time (Khosla et al. 2012; Li et al. 2017). While
many methods have been designed for computer vision ap-



plications, these network architectures are incompatible with
time series data. There is very limited research attention that
focuses on wearable-sensor-based data (Wilson, Doppa, and
Cook 2020). Taking this cue, as well as the uniqueness of
people’s activity characteristics, each person’s data, in this
paper, is treated as a single domain. Thus, we use the term
domain and person interchangeably hereinafter.

In the applications of activity recognition, one desired
model should be able to work well on unseen target data,
which is arguably more challenging than domain adaptation,
while with greater significance in practice. Take fall detec-
tion for the elderly as an example. Despite the goal being de-
tecting falling activity of the elderly, it is inconvenient to col-
lect training data from the elderly due to safety issues. How-
ever, it is less dangerous to collect training data by younger
participants with safety-ensured equipments. The model is
expected to train on the data collected from younger partic-
ipants and be readily applicable to the elder users without
collecting annotated training data from them. Empirically
we demonstrate that the state-of-the-art approaches have
a performance drop when encountered with unseen target
data. Detailed observations are listed in Section . To tackle
the problem, we propose to learn a deep generalizable model
across different domains named Generalizable Independent
Latent Excitation (GILE). Our proposed method is superior
to existing methods, in the sense that it does not require any
auxiliary information from an unseen target domain. After
completing the training stage, our method can be directly
applied to multiple target domains without re-training.

To incorporate the variations across domains, we develop
our generative method on top of the variational autoencoder
(VAE) framework (Kingma and Welling 2014). Specifically,
two probabilistic encoders are utilized to induce two groups
of latent representations, i.e., domain-agnostic and domain-
specific representations. Ideally, the domain-agnostic rep-
resentations capture the common information on conduct-
ing a certain class of activity, and the domain-specific rep-
resentations can reflect the unpredictable factors that in-
duce the variations among training domains, such as dif-
ferent environments, physical conditions and lifestyles of
participants, etc. To effectively disentangle the two latent
spaces, we develop a novel Independent Excitation mecha-
nism. By removing domain-specific representations, the re-
sulting domain-agnostic latent space is expected to be more
invariant to different domains than the original data. As a re-
sult, the model is expected to generalize better to new unseen
target domains. Our experimental evaluations on three activ-
ity datasets validate that our model can outperform state-of-
the-art methods with enhanced generalization capability.

Related Work

Feature learning methods on human activity recognition can
roughly be grouped into two categories: conventional ma-
chine learning methods and deep learning methods (Chen
et al. 2020). General machine learning methods include
PCA, LDA, Fourier transformation and handcrafted fea-
tures, such as mean, variance, median, maximum, minimum,
etc (Janidarmian et al. 2017; Bulling, Blanke, and Schiele
2014). Other methods learn statistical and structural features
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that are specifically designed for activity recognition (Qian,
Pan, and Miao 2018; Hammerla et al. 2013; Lin et al. 2007).
Deep learning methods automatically extract features from
raw signals, alleviating the feature design procedure. Deep-
ConvLSTM model (Morales and Roggen 2016a) consists of
four layers of convolutions and the succeeding two LSTM
layers. DDNN model learns three types of features, i.e.,
statistical, temporal and spatial correlation features (Qian
et al. 2019). Systematic comparisons on the performances
of DNNs, CNNs and RNNs on activity data are provided
in (Hammerla, Halloran, and P16tz 2016).

To enable transfer learning across domains, many ap-
proaches train a deep model on source domains and fine
tune with fixed or sequential training data from the tar-
get domain (Morales and Roggen 2016b; Buffelli and
Vandin 2020; Rokni, Nourollahi, and Ghasemzadeh 2018;
Mazankiewicz, Bohm, and Bergés 2020). Wang et al. (2018)
and Bai et al. (2020) reduced the distribution divergence be-
tween domains by minimizing the differences between do-
mains. Khan, Roy, and Misra (2018) transferred the distri-
butions of weights in source domains to target domains. The
DSN model separates features into two subspaces and de-
signs a loss function on feature space to encourage indepen-
dence on the premise that unlabeled data from the target do-
main is available (Bousmalis et al. 2016). A Convolutional
deep Domain Adaptation model for Time Series data (Co-
DATYS) is a domain-adaptation method with weak supervi-
sion of target domain’s label proportion (Wilson, Doppa, and
Cook 2020). The model learns domain-invariant features by
adversarial learning of the feature extractor and the classi-
fier. Target domain’s label proportion works as an extra con-
straint during the model training stage. Note that the above
approaches more or less require access to the target domain
in the training stage, limiting their potential capacities.

The Proposed Model
Problem Statement

In our setting of activity recognition, a domain is defined
as a joint distribution Pd(x, y)on X x ), where X', and
d € D = {1,..,D} denote the activity instance space,
activity class space and the index of a source domain. We
are given labeled data from D source domains {(X?, y?) ~
P4(x,y)}2_, from D participants as training data. Note that
Pi(z,y) # PI(z,y),Vi # j where i,j € D. All the do-
mains share the same label space, i.e., y € {1,...,n.},Vy €
y?%,Vd € D where n, denotes the number of activity cat-
egories the participants have conducted. Each X¢ contains
N, samples x¢ where i € {1,..., Ng}, and each sample
x¢ € RM*1 represents a vector of signals received from
wearable sensors at ¢-th timestamp. In the test phase, the
test data X¢ contains signals gathered from unseen partici-
pant(s), where d ¢ D. Our goal is to train a generalizable
deep learning model parametrized as f from D source do-
mains such that the trained model is able to generalize well

to target domain data X4, Empirically, we want to mini-
mize the target risk e;(f) = Pr(, , palf(x) # y]. Our
setting is more challenging than conventional transfer learn-



ing setting, due to the fact that the model does not have ac-
cess to any information from the target domain. Compared
with standard machine learning settings, our setting requires
D domain labels. Fortunately, the domain label is trivial to
collect since the participants’ identities are typically anony-
mously logged as the source of the training data.

Domain Agnostic and Specific Features

Generally, the data samples collected from different partic-
ipants for activity recognition are determined by many fac-
tors, such as the class of activities being conducted, the envi-
ronmental constraints for conducting activities, the moving
patterns of participants, etc. In order to enable the gener-
alization ability across different domains, it is crucial for
a model to effectively identify different factors from raw
data. Without loss of generality, we model the data gener-
ation process of observed activity data to be determined by
two types of factors: domain-agnostic and domain-specific
factors. The domain-agnostic factors contain commonality
of conducting the same activity among different domains,
i.e., the prototype or archetype of an activity. The domain-
specific factors, on the contrary, are the latent factors that
lead to the inter-domain differences of sensor readings, such
as different participants’ varying lifestyles, health condi-
tions, moving patterns, etc.

As inputs for neural networks, the training instances are
partitioned by fixed-size sliding window with length L. Here
the input of our model is denoted as x% € RM*%_ We con-
struct two probabilistic encoders p(z|x?) and p(z4|x?) pa-
rameterized by ¢ and 4 to extract latent features z and z4
that reflect the domain-agnostic and domain-specific factors
respectively. Note that z, is different for different domains.
Different from deterministic autoencoders that encode an in-
put instance as a single data point, we encode it as a distri-
bution over the latent space in order to incorporate varia-
tions in the data. The marginal likelihood of the latent space
becomes intractable due to the neural-network-based con-
ditional probabilities. To solve this problem, variational ap-
proximations are adopted, and a prior is assumed on the la-
tent representations. A common choice for the prior is a mul-
tivariate standard Gaussian distribution p(z) = N (0,I). The
imposed priors actually model the intra-domain uncertain-
ties, since the generated data x? is influenced by variations
in the latent factors. As shown in the following equations,
the encoders learn (y14,0,4) and (i, 0) such that gq(z4|x?)
and ¢(z|x?) follow the data-driven Gaussian distributions,
from which two latent vectors z; and z are generated via
the reparametrization trick in VAE and 5-VAE (Kingma and
Welling 2014; Higgins et al. 2017).

p(zalx?) = qa(zalx% vq) = N (2% |pa(x?), o (x*
p(zlx?) ~ q(zx%; ) = N (z|u(x?), o (x); ¥).

The network architecture of the proposed model is shown
in Figure 1. The obtained latent representations are then con-
catenated to feed into a decoder p(xd|z7 Z4; ¢) to reconstruct
x?, with ¢ being the parameter set for the decoder.

) Va)s
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Therefore, the marginal distribution for domain d is

0= [

The probabilistic encoders and decoder are learned with
the following objective function:

Leivo(x,24,2;0a, 1, §)
= Eugutaaixtzpa) atalxtzv) 108 P(x’ |20, 2; )]
—K L(qa(zalx";vq)||p(2a; ¢))
—KL(q(z|x%;9)||p(2; ¢)),

where the first item is the reconstruction error, and the last
two terms calculate KL divergence between the sampled la-
tent features and corresponding priors, which are interpreted
as regularizers on the latent feature spaces.

Note that the above feature learning procedure is in an un-
supervised manner. Although the two latent factors z,; and z
are designed to be independent to each other, simply using
two separate probabilistic encoders is not sufficient to guar-
antee that non-overlapping and disentangled features are
learned. In extreme cases, the two encoders may learn iden-
tical latent representations. As a result, we utilize the class
label y¢ and domain label d to guide the learning of features
in the training stage. To incorporate the class and domain in-
formation, two disentangling classifiers { DCq, DC} } with
parameters wq and w,, take the latent features as input and
predict corresponding labels. The classifier DCyq is trained
to correctly predict domain label d from the domain-specific
features zq4, and similarly, the classifier DCY, is trained to
correctly predict activity labels from the domain-agnostic
features z. The loss function is thus defined as

p(2)p(zq) dz dzg. (1)

Uz, 24)p

d j.
£DC(Z Z4,Y; 7d Wd,Wy)
D Ng

722 (ye, DOy (z;wy)) + £(d, DCq4(z4; Wwa))],

Sd 1i=1

where Ng = ZdD:1 Ny and £(-) is a task-specific loss
function, e.g., cross-entropy ((y,7) - Z?;ll[y
c]log . To minimize the loss, the domain-agnostic fea-
tures are encouraged to contain domain-agnostic factors, and
the domain-specific latent space are encouraged to capture

domain-specific factors through the training process.

The Independence Excitation Mechanism

Even though the above classifiers enable the the learning of
two separate domain-agnostic and domain-specific features,
overlapping features can still exist. For the domain-agnostic
latent space, there may exist domain-specific features as
long as these features do not alter the decision boundary of
the classifier significantly, and vise versa, which will cause
redundancy in neural networks. To further minimize the cor-
relations between domain-agnostic and domain-specific fea-
tures, we develop an extra Independence Excitation mecha-
nism. This is inspired by the independent optical excitation
of distinct neural populations (Klapoetke et al. 2014), which
independently activate two distinct neural populations in the
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Figure 1: The network architecture of the proposed GILE model. The activity data x¢ is the input of two probabilistic encoders
qa(zq|x?;104) and q(z|x?; 1), from which (i, 04) and (u, o) are learned. Then the domain-specific features z4 are sampled
from pg4 and o4. Meanwhile, the domain-agnostic features z are sampled from p and o. The z, is fed into a Fully-Connected
layer DCq to predict the domain label, and z is the input for activity classifier DCY,. To minimize the correlations among two
types of features, the Independent Excitation mechanism is designed, as shown in dashed arrow. Besides, the two features are
concatenated to be input of the decoder p(x?|z, z4; #) to reconstruct the input data. In the inference stage, only the modules
corresponding to domain-agnostic features are used for activity class prediction, as shown in the dotted arrow.

brain tissue. Similarly, we encourage z to be directly respon-
sible for class labels while making the other z, totally uncor-
related. To this end, the Independence Excitation mechanism
minimizes the accuracy of DCy when z is fed into DCy.
Likewise, the accuracy of DCy is forced to be minimized
when z, is fed into DCy,. In this way, the domain-agnostic
features are encouraged to be irrelevant of the domain la-
bels, and likewise, domain-specific features are expected to
be non-informative of the activity labels. The Independence
Excitation objective function is:

d j.
‘CIE(za Z4,Y; 7da Wd, Wy)

D N,
1 d

_Nis

d=1i=1

Model Summary

In summary, our proposed model is trained in an end-to-end
manner, and the total loss of the proposed model is formu-
lated in weighted summation formula:

L = Lepo + aLpc + YLiE, )

where « and -y are the trade-off parameters between the three
loss functions. Compared with VAE, our method considers
two latent factors instead of a single factor, leading to more
expressive capabilities of learned latent features. Compared
with 5-VAE which encounters trade-off between the com-
plexity of latent features and the commonality towards the
prior, our method alleviates this situation by utilizing avail-
able domain and activity labels as extra information to make
the learned latent features meaningful and informative. Em-
pirically, we find out that it is better to train the L3, sepa-
rately from the other two loss functions. The underlying rea-
son might be that the first loss function corresponds to the
generative model part, while the remaining two loss func-
tions correspond to classifiers. Therefore, we set one op-
timizer for the generative model and the other optimizer

> [, DCy (243 wy)) + £(d, DCa(z; wa))].
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for the disentangling classifiers, and the two optimizers are
trained iteratively. Also, o and «y are set to make three loss
functions values in the similar order of magnitude.

When encountered with a new unseen target domain, the
domain label space may be disjoint with source domains.
Therefore, domain-specific features are not beneficial to the
prediction task. Specifically, during the inference stage, a
test data sample x* drawn from an unknown target domain is
fed into the probabilistic encoder ¢(z|x%; ) only, to gener-
ate the domain-agnostic features z’. Subsequently, z' is fed
into DCYy to predict the corresponding activity class labels.

Note that in this work, we simply apply both probabilis-
tic encoders on the raw data x. With this in mind, it is also
possible to learn features g(x) via existing feature extrac-
tion method g (any method from machine learning and deep
learning models), and then feed the features into the en-
coders q4(zq|g(x)) and ¢(z|g(x)). Different feature extrac-
tion methods g and / can be applied to the raw data to con-
struct features for the encoders separately, i.e., g4(z4|g(x))
and ¢(z|h(x)). It is also possible to incorporate more ex-
plicit domain expert knowledge to better define the domain-
agnostic and domain-specific factors, serving as extra infor-
mation for learning a generalizable model.

Experiments
Experimental Setup

Datasets. We evaluate the proposed method on three large-
scale wearable-sensor-based benchmark datasets.

e The UCIHAR dataset (Anguita et al. 2012) contains six
daily activities (walking, sitting, laying, standing, walking
upstairs, walking downstairs) conducted by a group of 30
volunteers within an age range of 19 to 48. A smart phone
is attached on the waist, with frequency of 50 Hz. There
are 1,318,272 number of samples in total, and the instance
dimension is 9.



e The Opportunity dataset (Chavarriaga et al. 2013) col-
lects 4 participants’ daily activities in an ambient-sensor
home environment with different inertial sensor modali-
ties. There are 18 fine-grained gesture classes, i.e., {Open
/ Close Dishwasher / Fridge / Drawer1 / Doorl / Drawer2
/ Door2 / Drawer3, Move Cup, Clean Table and Null}.
The Null class indicates the transition of every two ad-
jacent activities. The total number of samples is 869,387,
and the feature dimension is 113, with frequency of 30Hz.

e The UniMiB SHAR dataset (Micucci, Mobilio, and Napo-
letano 2016) records 9 types of activities of daily liv-
ing (labeled as: StandingUpFL, LyingDownFS, Standin-
gUpFS, Running, SittingDown, GoingDownS, Goin-
gUpS, Walking, Null) and 8 types of falls (labeled
as: FallingBackSC, FallingBack, FallingWithPS, Falling-
Forw, Fallingleft, FallingRight, HittingObstacle, Syn-
cope). 30 Subjects with ages ranging from 18 to 60 years
conducted the 17 fine-grained activities partially or fully.
The data is collected by an acceleration sensor embedded
in an Android phone with sample frequency of 50 Hz. Af-
ter pre-processing, each sample contains 3 vectors of 151
accelerometer values.

Baselines. We compare our proposed GILE model with
the closely related baselines. The DeepConvLSTM (Morales
and Roggen 2016a) and DDNN (Qian et al. 2019) are
the state-of-the-art feature learning approaches on activity
recognition. CoDATS (Wilson, Doppa, and Cook 2020) is
the latest domain adaptation model for time series data. The
class label proportions of target domain are provided to Co-
DATS as extra information for training. Since our method
is based on VAE, we also compare with VAE (Kingma and
Welling 2014), 8-VAE (Higgins et al. 2017) and DIVA (Ilse
et al. 2019), the latter of which is a state-of-the-art model for
computer vision. We use the released code if it is available.
Other methods without available codes are reproduced by us
in Pytorch (Paszke et al. 2019).

Implementation Details. We conduct experiments with
leave-one-domain-out strategy in each dataset: one of the
domains is treated as the unseen target domain, and the rest
domains are considered as available source domains. Due to
the severe class imbalance problem in existing datasets, we
set the probability of an activity being chosen in a training
mini-batch to be the inverse of the number of the activity. F1
score is selected as performance measure. Data normaliza-
tion is conducted on all datasets. Due to the large number of
domains in UCIHAR, we simply utilize the first 5 domains.
The UCIHAR data is pre-processed beforehand and is sam-
pled in sliding window of 2.56 seconds and 50% overlap,
resulting in 128 readings for each window. 77 out of 113
features are used for Opportunity, and sliding window of 1
second is applied. In UniMiB SHAR dataset, we select the
first 4 subjects who have conducted all activities (ID: 1,2,3
and 5) in our experiments to keep the amount of subjects
comparable to other datasets.

For our architecture, each probabilistic encoder consists
of 4 layers of convolutions with a max-pooling layer after
each convolution. A single fully-connected layer is used as
each classifier. For methods which have [ layers of LSTMs

with h-dimensional hidden representations, we tune param-
eters I € {1,2,3} and h € {32,64,128,256,512}. § is
chosen from {0.002,0.01,0.1,1, 5,10, 100}. The batch size
is set to 64, and the maximum training epoch is set to 100.
For all methods except CoDATS, the Adam optimizer with
learning rate 10~2 and weight decay 10~ is used. For Co-
DATS method, the learning rate is reduced to 10~* and the
training epoch is set to 500. We report the best results among
the different configurations for every method'.

Domain Shift in Activity Recognition

We first conduct evaluations to investigate the domain shift
problem in human activity recognition. To do so, we com-
pare two settings. The first setting random is the tradi-
tional way, where each participant’s data is randomly split
into training and test data by a specific proportion. The sec-
ond setting cross—person is the proposed way, where
one participant’s data is treated as unseen domain, and other
participants’ data are treated as labeled source domains
data. To be fair, we set the proportion of training and test
data in both settings to be identical. We apply two state-
of-the-art methods, i.e., DeepConvLSTM and DDNN on
both settings. For both methods, we tune the LSTM lay-
ers [ € {1,2,3} and dimensions of hidden representations
h € {32,64,128,256,512}. The best performance are il-
lustrated in Figure. 2 on the three datasets. As shown in
the figure, the performance of both models drop signifi-
cantly when the setting is changed from random setting
to cross-person setting. These results favorably sup-
port our motivation that cross-person generalization is more
challenging for human activity recognition. Among the three
datasets, the UniMiB SHAR dataset has the most significant
differences between the two settings, especially for the tar-
get domain 5, the accuracy drops from 83.89% to 34.9%
for DeepConvLSTM approach and from 88.93% to 19.46%
for DDNN method. The result actually fits the fact that the
UniMiB SHAR dataset is designed to collect training data
from diverse persons. Within each dataset, the performance
gap between two settings are sometimes larger and some-
times smaller, indicating that the similarities among differ-
ent persons may be different.

Experimental Results and Analysis

Source  DDNN  DeepConvLSTM  CoDATS GILE

0 80.13 78.48 48.01 82.49
2 93.05 92.05 60.93 90.62
3 54.30 49.67 30.13 56.56
4 72.15 68.54 32.78 76.56
Ave. 74.91 72.18 42.96 76.56

Table 4: Performance comparisons of single source domain
settings on UCIHAR. The target domain is domain 1.

!The source code and high-resolution figures are available at
https://github.com/Hangweil2358/cross-person-HAR.
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Figure 2: Comparisons of random and cross—person settings on 3 datasets. U0 to U4 denote target domains in UCIHAR.

S1 to S4 are from Opportunity, and the rest are from UniMiB SHAR.
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Source Target VAE [3-VAE DIVA DDNN DeepConvLSTM CoDATS GILE
1,2,3,4 0 51.87 5331 7500 84.72 71.47 81.27 85.15
0,2,3,4 1 44770 4437 77.18  78.14 81.78 55.63 81.56
0,1,3,4 2 6422 62.17 71.61  82.40 78.00 77.42 86.97
0,1,2,4 3 3691 4921 81.87 88.01 74.44 60.57 94.37
0,1,2,3 4 39.07 5828 79.68 81.12 82.45 66.23 92.81

Ave. 4735 5347 77.07 82.88 77.63 68.22 88.17

Table 1: The overall performance on the UCIHAR dataset (unit:
best performance is underlined.

%). The best performance is highlighted in bold, and the second

Source  Target VAE [S-VAE DIVA DDNN DeepConvLSTM CoDATS GILE
S2,83,54 S1 7721 1148 7586  66.6 69.59 83.58 83.86
S1,S3,54 S2 7394  61.02 7354 7198 67.17 81.04 81.65
S$1,S2,54 S3 15.65 31.72 6581 71.51 60.59 78.11 78.66
$1,S2,S3 S4 75.86  13.65 7343  64.53 65.51 80.60 81.41

Ave. 60.67 2947 72.16  68.66 65.72 80.83 81.40

Table 2: The overall performance on the Opportunity dataset (unit: %). The best performance is highlighted in bold, and the

second best performance is underlined.

The overall experimental results of the proposed GILE
method and baselines on UCIHAR, Opportunity and
UniMiB SHAR datasets are listed in Table 1, Table 2 and
Table 3, respectively. Overall, our proposed method has
achieved the best average performance on all datasets, which

greatly illustrates its robustness and generalization capabil-
ity across different target domains.

On UCIHAR dataset, the feature-learning-based ap-
proaches, i.e., DDNN and DeepConvLSTM, have higher ac-
curacy than VAE-based approaches and CoDATS. This may
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Source Target VAE [(3-VAE DIVA DDNN DeepConvLSTM CoDATS GILE
2,3,5 1 11.72 1563 48.17 4792 44.27 42.71 55.72
1,3,5 2 3276 32776 39.06  53.69 50.26 46.66 54.06
1,2,5 3 22.37 2697 61.87 73.68 75.66 61.51 70.31
1,2,3 5 29.19  30.20 3843 19.46 34.90 31.88 42.81
Ave. 24.01 2639 46.88  48.69 51.27 45.69 55.61

Table 3: The overall performance on the UniMiB SHAR dataset (unit: %). The best performance is highlighted in bold, and the

second best performance is underlined.
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(a) GILE model on Opportunity.

(c) VAE model on
UCIHAR.

(b) GILE model on UCIHAR.

Figure 3: Visualization of the t-SNE embeddings of learned feature spaces. Best viewed in color. Different shapes denote
different domains, and each class of activity is demonstrated by a distinct color.

be due to the extreme small number of features in UCIHAR,
such that extracting more powerful features enable better
learning of the classification. Our method achieves the best
on 4 out of 5 scenarios, and the performance of the second
scenario is only 0.22% inferior to the best performance.

On Opportunity dataset, the CoDATS and GILE is gen-
erally better than VAE-based and feature-learning-based
methods. This also supports our observation on the impor-
tance of feature learning when raw data has only a few fea-
tures. For Opportunity dataset, the raw data contains 77 di-
mensions of features, which enables our method and Co-
DATS to have superior performance.

On UniMiB SHAR dataset, our GILE method ranks the
first when the target domain is 1, 2 and 5. These three tasks
are more difficult than the rest one, according to Table. 3.

Therefore, the above results on the three datasets
favourably demonstrate that our proposed GILE model is
capable of generalizing well from several source domains
to unseen target domain.

Source Domain Similarity Matters. We investigate why
our proposed method achieves inferior performance on cer-
tain scenarios, such as the setting when person 1 is target do-
main in UCIHAR dataset. We conduct experiments on single
source domain setting, and the results are listed in Table. 4.
From the table, we find out that when the source data comes
from person 2, both DDNN and DeepConvLSTM achieve
relatively high performance compared with CoDATS. This
indicates that person 2 and 1 have very little domain differ-
ence such that transfer learning is not necessary for the two
persons. This also explains our inferior performance com-
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pared with feature-learning-based approaches when the tar-
get domain ID is 1.

Latent Feature Space Visualization The t-SNE embed-
dings of the learned latent domain-agnostic representations
z on Opportunity and UCIHAR are plotted in Figure. 3(a)
and 3(b), to validate whether our proposed GILE is able to
successfully learn domain-agnostic features. For compari-
son, the t-SNE embedding of VAE on UCIHAR is shown
in Fig. 3(c). We observe that for the proposed GILE model,
features from different domains are mixed together, indicat-
ing that the learned latent space z is indeed not affected by
domain-specific factors. In addition, the clusters of embed-
dings of GILE are more distinct and organized than those of
VAE, and samples with the same activity class tend to group
into the same cluster, resulting in that the number of clusters
learned by GILE is exactly the number of classes.

Conclusion

In this paper, we propose a novel method named GILE
for cross-person sensor-based human activity recognition.
The proposed approach effectively learns generalizable fea-
ture representations across domains by means of disentan-
gling domain-agnostic and domain-specific features. The
two groups of features are split by the Independent Excita-
tion mechanism. The proposed approach is shown to consis-
tently achieve the best performance over the state-of-the-art
methods on three datasets. In the future, we plan to com-
bine source domain selection with the proposed method to
investigate the similarities among domains.
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